Publications


Barone, V., Byrne, M., & Lyons, D. C. (2022). Lineage tracing shows that cell size asymmetries predict the dorsoventral axis in the sea star embryo. BMC Biology, 20(1), 179. https://doi.org/10.1186/s12915-022-01359-3
Batzel, G. O., Moreno, B. K., Lopez, L. S., Nguyen, C. K., Livingston, B. T., Joester, D., & Lyons, D. C. (2022). Proteomic and Transcriptomic Analyses in the Slipper Snail Crepidula fornicata Uncover Shell Matrix Genes Expressed During Adult and Larval Biomineralization. Integrative Organismal Biology, 4(1), obac023. https://doi.org/10.1093/iob/obac023
Vyas, H., Schrankel, C. S., Espinoza, J. A., Mitchell, K. L., Nesbit, K. T., Jackson, E., Chang, N., Lee, Y., Warner, J., Reitzel, A., Lyons, D. C., & Hamdoun, A. (2022). Generation of a homozygous mutant drug transporter (ABCB1) knockout line in the sea urchin Lytechinus pictus. Development, 149(11), 7. https://doi.org/10.1242/dev.200644
Goodheart, J. A., Barone, V., & Lyons, D. C. (2022). Movement and storage of nematocysts across development in the nudibranch Berghia stephanieae (Valdes, 2005). Frontiers in Zoology, 19(1), 15. https://doi.org/10.1186/s12983-022-00460-1
Warner, J. F., Lord, J. W., Schreiter, S. A., Nesbit, K. T., Hamdoun, A., & Lyons, D. C. (2021). Chromosomal-level genome assembly of the painted sea urchin Lytechinus pictus: A genetically enabled model system for cell biology and embryonic development. Genome Biology and Evolution, 13(4). https://doi.org/10.1093/gbe/evab061
Lyons, D. C., Perry, K. J., Batzel, G., & Henry, J. Q. (2020). BMP signaling plays a role in anterior-neural/head development, but not organizer activity, in the gastropod Crepidula fornicata. Developmental Biology, 463(2), 135–157. https://doi.org/10.1016/j.ydbio.2020.04.008
Nesbit, K. T., Fleming, T., Batzel, G., Pouv, A., Rosenblatt, H. D., Pace, D. A., Hamdoun, A., & Lyons, D. C. (2019). The painted sea urchin, Lytechinus pictus, as a genetically-enabled developmental model. In K. R. Foltz & A. Hamdoun (Eds.), Echinoderms, Pt A (Vol. 150, pp. 105–123). Academic Press Ltd-Elsevier Science Ltd.
Lyons, D. C., Perry, K. J., & Henry, J. Q. (2017). Morphogenesis along the animal-vegetal axis: fates of primary quartet micromere daughters in the gastropod Crepidula fornicata. Bmc Evolutionary Biology, 17. https://doi.org/10.1186/s12862-017-1057-1
Henry, J. Q., Lyons, D. C., Perry, K. J., & Osborne, C. C. (2017). Establishment and activity of the D quadrant organizer in the marine gastropod Crepidula fornicata. Developmental Biology. https://doi.org/10.1016/j.ydbio.2017.09.003
Henry, J. Q., Lesoway, M. P., Perry, K. J., Osborne, C. C., Shankland, M., & Lyons, D. C. (2017). Beyond the sea: Crepidula atrasolea as a spiralian model system. International Journal of Developmental Biology, 61(8–9), 479–493. https://doi.org/10.1387/ijdb.170110jh
Henry, J. Q., & Lyons, D. C. (2016). Molluscan models: Crepidula fornicata. Current Opinion in Genetics & Development, 39, 138–148. https://doi.org/10.1016/j.gde.2016.05.021
Martik, M. L., Lyons, D. C., & McClay, D. R. (2016). Developmental gene regulatory networks in sea urchins and what we can learn from them. F1000Research, 5(203). https://doi.org/10.12688/f1000research.7381.1
Perry, K. J., Lyons, D. C., Truchado-Garcia, M., Fischer, A. H. L., Helfrich, L. W., Johansson, K. B., Diamond, J. C., Grande, C., & Henry, J. Q. (2015). Deployment of regulatory genes during gastrulation and germ layer specification in a model spiralian mollusc Crepidula. Developmental Dynamics, 244(10), 1215–1248. https://doi.org/10.1002/dvdy.24308
Lyons, D. C., Perry, K. J., & Henry, J. Q. (2015). Spiralian gastrulation: germ layer formation, morphogenesis, and fate of the blastopore in the slipper snail Crepidula fornicata. Evodevo, 6. https://doi.org/10.1186/s13227-015-0019-1
Moczek, A. P., Sears, K. E., Stollewerk, A., Wittkopp, P. J., Diggle, P., Dworkin, I., Ledon-Rettig, C., Matus, D. Q., Roth, S., Abouheif, E., Brown, F. D., Chiu, C. H., Cohen, C. S., De Tomaso, A. W., Gilbert, S. F., Hall, B., Love, A. C., Lyons, D. C., Sanger, T. J., … Extavour, C. G. (2015). The significance and scope of evolutionary developmental biology: a vision for the 21st century. Evolution & Development, 17(3), 198–219. https://doi.org/10.1111/ede.12125
Lyons, D. C., Martik, M. L., Saunders, L. R., & McClay, D. R. (2014). Specification to biomineralization: Following a single cell type as it constructs a skeleton. Integrative and Comparative Biology, 54(4), 723–733. https://doi.org/10.1093/icb/icu087
Lyons, D. C., Martindale, M. Q., & Srivastava, M. (2014). The cell’s view of animal body-plan evolution. Integrative and Comparative Biology, 54(4), 658–666. https://doi.org/10.1093/icb/icu108
Cheng, X. R., Lyons, D. C., Socolar, J. E. S., & McClay, D. R. (2014). Delayed transition to new cell fates during cellular reprogramming. Developmental Biology, 391(2), 147–157. https://doi.org/10.1016/j.ydbio.2014.04.015
McIntyre, D. C., Lyons, D. C., Martik, M., & McClay, D. R. (2014). Branching out: Origins of the sea urchin larval skeleton in development and evolution. Genesis, 52(3), 173–185. https://doi.org/10.1002/dvg.22756
Lyons, D. C., & Henry, J. Q. (2014). Ins and outs of Spiralian gastrulation. International Journal of Developmental Biology, 58(6–8), 413–428. https://doi.org/10.1387/ijdb.140151dl
Warner, J. F., Lyons, D. C., & McClay, D. R. (2012). Left-right asymmetry in the sea urchin embryo: BMP and the asymmetrical origins of the adult. Plos Biology, 10(10). https://doi.org/10.1371/journal.pbio.1001404
Lyons, D. C., Perry, K. J., Lesoway, M. P., & Henry, J. Q. (2012). Cleavage pattern and fate map of the mesentoblast, 4d, in the gastropod Crepidula: a hallmark of spiralian development. Evodevo, 3. https://doi.org/10.1186/2041-9139-3-21
Lyons, D. C., Kaltenbach, S. L., & McClay, D. R. (2012). Morphogenesis in sea urchin embryos: linking cellular events to gene regulatory network states. Wiley Interdisciplinary Reviews-Developmental Biology, 1(2), 231–252. https://doi.org/10.1002/wdev.18
Agee, S. J., Lyons, D. C., & Weisblat, D. A. (2006). Maternal expression of a NANOS homolog is required for early development of the leech Helobdella robusta. Developmental Biology, 298(1), 1–11. https://doi.org/10.1016/j.ydbio.2006.04.473